
Model theory of Hardy fields









Abstract

These are notes from Lou van den Dries' lectures on the model theory of Hardy fields,
during the Fields thematic semester on tame geometry, January-June 2022.

The notes are incomplete, and start with considerations on second order linear equa-
tions over Hardy fields. In particular, the material on Hausdorff and Hardy fields and
semialgebraic differential equations of order 1 over Hardy fields is not here. So until I
include it (which I may never do), the notes here start from page 13.
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Chapter 3
Linear equations of order 2
02-17: Lecture 10

Notation 3.0.1. For f ; g 2 C with f ; g > 0, we write f � g if f �max (g; g¡1)N, and
f �� g if log f � log g. We also write f �� g if f�/ g and g�/ f and f �� g if log f < log g.

Proposition 3.0.2. Let H be a Hardy field, let h2H with h��x. Then there is a unique
y 2C2 with

y 00+ y=h (3.0.1)

and y¡ f is non-oscilllating for all f 2H.

So y generates a Hardy field over H.

Lemma 3.0.3. Suppose that h2Ca1 and h0>C 2R>. Then for all y2Ca1 with y 00+ y=h,
we have y >R.

Proof. We have h>0 since h0>C >0. Let a2R with h(t)>0 and h0(t)>C for all t>a.
It is enough to show the result for the solution

y(t)=
Z
a

t

sin(t¡ s)h(s) ds=
Z
a

t

sin(s)h(t¡ s) ds

of (3.0.1). Set tn= a+2�n for all n2N. So for t> tn, we haveZ
0

2n�

sin(s)h(t¡ s) ds=
X
i=0

n Z
2i�

2(i+1)�

sin(s)h(t¡ s) ds

where for i2f0; : : : ; ng, we haveZ
2i�

2(i+1)�

sin(s)h(t¡ s) ds =
Z
0

�

sin(s) [h(t¡ 2 i �¡ s)¡h(t¡ 2 (i+1)�¡ s)]ds

>
Z
0

�

sin(s)�C ds since h0(u)>C on [a;+1)

= 2�C:

It follows that
R
0

2n� sin(s) h(t ¡ s) ds> 2 n � C for t> tn. In particular y(tn)> 2 n � C.
Routine computations show that between tn and tn+1, we also have y(t)>2n�C, so y>R
as a germ. �

Lemma 3.0.4. Let h be Hardian with jhj�x, and let y2C2 with y 00+ y=h. Then y�x.

Proof. Changing h with ¡h and y with ¡y if necessary, we can arrange that h> 0. For
n 2N, set yn := y ¡ xn. We have yn00+ yn= hn := h¡ Q(x) for some polynomial Q(x) =
¡n (n¡1)xn¡2+ ��� with integer coefficients. We still have hn�xN, whence hn0 �xN since
h is Hardian. In particular hn satisfies the conditions of Lemma 3.0.3, whence yn>R. In
particular y�xN. �
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Theorem 3.0.5. Let H be a real-closed Hardy field and let h2H. Then either

I. f 00+ f ¡h4xn for some f 2H and n2N, or

II. f 00+ f ¡h�xn for all f 2H and n2N.

In case I, there is a unique y 2C2 with y 00+ y=h which generates a Hardy field H(y; y 0)
over H. In case II, every y 2C2 with y 00+ y=h generates a Hardy field H(y; y 0) over H.

Proof. Suppose that we are in case I , with corresponding (f ; n). Setting z= y¡ f , the
ODE

y 00+ y=h
transforms into

z 00+ z=h¡ (f 00+ f)4xn

Then Proposition 3.0.2 gives the result. Suppose now that we are in case II . Let y 2 C2
with y 00+ y=h. We will show that y¡ f is non-oscillating for all f 2H . For f 2H, we have

(y¡ f)00+(y¡ f)=h¡ (f 00+ f)�x

so Lemma 3.0.4 gives thaty¡ f� x, whence in particular y is non-oscillating. Therefore
y generates a Hardy field over H . �

Remark 3.0.6. Suppose we are in case I of the previous theorem. Then the unique
corresponding y actually generates a Hardy field over any Hardy field extension H��H.
Indeed the f ; n of case I for H also witness case I for H�, whence by unicity, we are still
in case I in H� with the same y.

Suppose we are in case II of the theorem. Then there are continuum-many solutions y
witnessing case II , any two of which are incompatible (because of the oscillating nature of
non-zero solutions of the homogeneous harmonic equation). Plausible: in case II, for any
two solutions y1; y2, the fields H(y1; y10) and H(y2; y20) are isomorphic.

Does case II actually occur? Boshernitzan show that this is the case in H =R(x;
ex

2
)rc for y 00+ y= ex

2
. One line in Boshernitzan's proof should be made clearer. Indeed

Boshernitzan uses the following fact about complex linear differential equations:

Fact Let f1; : : : ; fn; g be holomorphic functions on a non-empty simply connected region

 in C. Then any solution y of

y(n)+ f1 y
(n¡1)+ � � �+ fn y= g

which is holomorphic on a non-empty open U �
 extends holomorphicaly to 
. So come
back to

y 00+ y=ex
2
;

we note that x 7! ex
2
is entire, so any solution y extends into an entire function. This closes

the gap in Boshernitzan's proof (see upcoming notes from Lou).
Let H be a Hardy field. A germ y 2C<1 is said Hardian over H , or H-Hardian if y

lies in some Hardy field extension of H . Boshernitzan defines a larger Hardy field

E(H) := ff 2C<1 : y is H�-Hardian for all H� Hardy field extension of Hg:

Equivalently, this is the intersection of all maximal Hardy fields containing H .

What do we know about E(H)? We have E(E(H))=E(H) by definition. Since any
maximal Hardy field is Liouville-closed, the field E(H) is Liouville-closed. We also have
R�E(H) and cos(h); sin(h)2E(H) for all h2E(H)41 by previous results.

14 Linear equations of order 2



Let us focus on E :=E(Q), which is the set of �most Hardian germs�, i.e. germs that
are contained in all maximal Hardy fields. By Boshernitzan's result, the ODE

y 00+ y=ex
2

has no solution in E. The differential field E is differentially algebraic (over Q say).
We'll give a sketch of proof shortly. As a consequence, no y 2E is transexponential or
sublogarithmic. Moreover E is closed under composition [3, Theorem 6.8].

Fernando Sanz suggests looking at the differential equation

y 00+ y= ex

x
;

whose solutions are supposed to be definable in o-minimal structures.

Question 1. Does any element of E>R have a level?

Answer 1. The answer is positive and can be deduced from a result by van der Hoeven.
Consider the field Tg of grid-based transseries. Let Tda denote the subfield of Tg of d-
algebraic grid-based transseries over R. This is da-closed in Tg, hence is a model of the
elementary theory TLE of log-exp transseries as an ordered valued differential field. By
[5, Theorem 5.12], there is a Hardy field H closed under exp and log and an isomorphism
(Tda;+;�; <;�; @; log)¡! (H;+;�; <;�; 0; log). In particular H is a model of TLE. Let
f 2E and assume for contradiction that f 2/ H. Let M �H be a maximal Hardy field.
We have f 2M by definition of E. Now f 2M nH must be d-transcendant over H, hence
also over R. This contradicts Boshernitzan's result that each element of E is d-algebraic.
Thus E �H. In particular, the field E embeds into Tg as an ordered exponential field, so
each f 2E>R has a level n2Z.

Question 2. Is E closed under compositional inversion (of positive infinite germs)?

Question 3. IsE contained inHR for some o-minimal expansionR=(R;+;�;<;:::) of the
real ordered field? More precisely, do we have E �Pfaff(Ralg) (Pfaffian closureas per [7])?

Sketch of proof that E is differentially algebraic. Suppose f 2 C<1 is Hardian
but not differentially algebraic. One (Boshernitzan, for instance) can show that for any
sufficiently small �2 (C<1)� i.e. if �(n)� 1

expN
for all n2N, then f + � sin is also Hardian.

But then there is a maximal Hardy field containing f + � sin, which does not contain f : a
contradiction. �

General fact. [in a paper of Lou and Matthias]Let H be a Hardy field containing x. Let
P 2H [Y ; Y 0; : : : ; Y (n)]. Then there is an f 2H> with either

P (y; y 0; : : : ; y(n))> 0

for all H-Hardian germs y > expN(f), or

P (y; y 0; : : : ; y(n))< 0

for all y > expN(f).

02-22: Lecture 11
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Chapter 4
Cuts and differential algebra

4.1 Asymptotic couples

Let H be a Hardy field, let v:H�¡!¡ be the natural valuation of H seen as an ordered
field. We write OH , or sometimes H4, for the corresponding valuation ring. Recall that
for non-zero f ; g�/ 1, we have f� g=) f 0� g 0. So we have an operation 0 on the value group

¡=/ ¡! ¡
vf 7¡! (vf)0 := vf 0:

We also have a function

¡=/ ¡! ¡
vf 7¡! (vf)y := (vf)0¡ (vf);

which will have useful properties. This function and the structure (¡; y) were introduced
by M. Rosenlicht. The dagger operation is in particular a valuation on the ordered group
¡, that is, for �; � 2¡=/ with �+ �=/ 0, we have (�+ �)y>min (�y; �y). The properties of
y on H showed earlier also imply that for �2¡=/ and � > 0, we have �y< � 0 and � 0> 0.

4.1.1 Asymptotic couples

Definition 4.1.1. [6, 2] An asymptotic couple is a pair (¡;  ) where ¡ is a linearly
ordered Abelian group and a function  : ¡=/ ¡!¡, such that for all �; � 2¡=/ , we have

AC1. If �+ �=/ 0, then  (�+ �)>min ( �;  �).

AC2.  (k�)=  (�) for all k 2Zn f0g.
AC3. If �> 0, then �+  �>  �.

If in addition, we have 0< � < � =)  �>  �, then we call (¡;  ) and H-asymptotic
couple. We will often write �y :=  � and �0 :=  �+� for all �2¡=/ . We say that (¡;  )
has small derivation if �0> 0 for all �> 0.

So the value group of H with the dagger operation defined above is an H-asymptotic
couple. In fact the same holds if H is any H-field with small derivation. It is sometimes
convenient to extend  to a function  : ¡¡! ¡t f1g by setting ¡<1 and  0 :=1.
This preserves the axioms AC1¡¡AC3 above.

The basic facts about asymptotic couples andH-asymptotic couples were either derived
by Rosenlicht or proved in [2, Sections 6.5, 9.1 and 9.2].

Basic facts Let (¡;y) be an asymptotic couple, and let �; �; 
2¡. We have the following.

i. If �; �=/ 0 and �=/ �, then �y¡ �y= o(�¡ �), i.e. N> (�y¡ �y)<�¡ �.
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ii. The function ¡=/ ¡!¡; 
 7! 
 0 is strictly increasing.

iii. If �; �=/ 0, then N> (�y¡ �y)<max (�;¡�).

A consequence of iii is that  extends uniquely to the divisible hull Q¡ of ¡ in such a way
that the corresponding structure (Q¡;  ) is an asymptotic couple.

A general intuition about asymptotic couples can be summurized in the following graph
of  : ¡¡!¡ on the asymtptoc couple:

ve¡xvx¡1

this point

should be higher

vx¡1

and on the right

On this graph, we see that for all �2¡> and � 2¡ we have �0> �y. We also see that
if 	\¡> is non-empty, then we have �> 0=)�0> 0 for all �, and  has a unique fixed
point which we suggestively denote vx¡1 here, and sometimes call 1.

Definition 4.1.2. An asymptotic field is a valued differential field (K;4; @) such that for
all non-zero f ; g� 1, we have f � g() f 0� g 0.

Then the value group vK� of K gives rise to an asymtotic couple defined as in the case
of Hardy fields or H-fields, (which are particular cases of asymptotic fields). It follows from
the defintion that for all non-zero f ; g�/ 1, we have f � g() f 0� g 0. In this context, or
for general asymptotic couples, we define

	 :=  (¡>)=  (¡=/):

We have 	< (¡>)0 in (¡; <). If H is a Liouville-closed Hardy field, then the set 	 is
downward closed (i.e. initial in (¡;<)), because each derivative is a logarithmic derivative.

4.1.2 Further basic facts about couples

See [2, Sections 6.5, 9.1 and 9.2] for proofs of the following facts, some of which were already
proved by Rosenlicht.

The set ¡ n (¡=/)0 has at most one element, and this element equals max	 if 	 has a
maximum.

Corollary 4.1.3. There is at most one 
 2¡ with 	< 
 < (¡>)0.

Such an element 
 is called a gap, and there cannot be gaps if 	 has a maximum. Gaps
remains gaps when taking divisible hulls. We call (¡;  ) grounded if 	 has a maximum.
We say that (¡;  ) has asymptotic integration if ¡= (¡=/)0.

18 Cuts and differential algebra



Trichotomy for H-asymptotic couples We have the following trichotomy, given an
H-asymptotic couple (¡;  ). Exactly one of the following occurs:

I. (¡;  ) has a gap.

II. (¡;  ) is grounded.

III. (¡;  ) has asymptotic integration.

Example 4.1.4. Here are examples for each case of the trichotomy.

I. Note that for ¡=f0g, the element 0 is a gap. It is not trivial to construct other H-
asymptotic couples with a gap, but they can be realized as non-Archimedean Hardy
fields or fields of transseries.

II. Suppose ¡ is finitely generated as an Abelian group, or more generally that its
rational rank (i.e. dimQ (Q¡)) is finite, or even the rank of ¡ has a valued group.
Then (¡;  ) is grounded, since in fact 	 is finite.

III. If H is a Hardy field which is closed under integration. Then its asymptotic couple
has asymptotic integration.

Consider normalized H-asymptotic couples (¡;  ; 1) where 1> 0 and  (1)=1, and let
THa denote the corresponding first-order theory.

Theorem 4.1.5. [1] A normalized H-asymptotic couple (¡;  ;1) is existenially closed with
respect to THa if and only if all the following conditions are satisfied:

i. ¡ is divisible.

ii. (¡;  ) has asymptotic integration.

iii. 	 is initial in (¡; <).

In other words, we have a model companion for THa. Moreover, this model companion has
QE in the extended language with a unary predicate for 	.

This is in particular the case for Liouville-closed Hardy fields (or Liouville-closed H-
fields with small derivation). In that case the group ¡ is naturally an ordered vector space
over R, using exp and log to define real powers

f r := exp(r log f); r 2R

of strictly positive elements. We also have a QE result for two sorted structure expanded
with this scalar multiplication. Moreover, this last structure is interpretable in the ambient
Hardy field / H-field. One interprets (r; vf) 7! r vf using the differential equation

yy f = r;

whose ambiguities are absorbed by the valuation.

4.2 Cuts in Hardy fields

(continued in 03-01: Lecture 12) Extending a Hardy fieldH means in particular realizing
cuts in H. We will focus on cuts in H> for convenience, i.e. on subsets of H> without
supremum in H>. We assume that R H. There are five particularly important cuts:

4.2 Cuts in Hardy fields 19



Symbol Definition Realization In R(x) In Li(R)
1 H> y >H ex exp!
`1 H>;4 N< y<H>N log x log!


 ff :
R
f 4 1g (H>;4)0< y < (H>R)y logx, 1

logx log!
0 ,
�

1

log!

�0
� (¡
y) ¡(H>R)yy< y<¡(H�;>)0y 1

x
+ 1

x logx
1

x
+ 1

x logx + � � �

! !(�) !(�L)< y<!(f)+ (¡f y)2; f 2�L 1

x2
+ 1

x2 (logx)2
1

x2
+ 1

x2 (logx)2
+ � � �

Note that all those cuts are definable in a uniform way in (H;+;�; <; 0). We write
c2H to mean that the cut c=(A;B) is realized in H, meaning that there is an h2H with
A<h<B. We write c2/H to mean that c is realized in a Hardy field extension of H but
not in H. We say that H is �-free if �2/H. Likewise H is !-free if !2/H.

For the lambda cut and the omega cut, we have other explicit quasi-quadratic defini-
tions, assuming that H is also ungrounded (so not R(x)). In particular, the field H is �-
free if and only if

8f ; (9g; (g� 1; f ¡ gyy< gy)):

For any differential field (F ; 0), we have a function

!(z) :=¡2 z 0¡ z2

on F . If F is an H-field, then ! is strictly increasing on �L.
As long as H is ungrounded, there is a sequence (`�)�<� 2 H>R which is strictly

decreasing, coinitial in H>R and satisfies `�
y� `�

y whenever � < � < �. The ordinal � is
an infinite limit ordinal. In transseries, we must have �=! and we can take `n := logn x
for all n<!. Then a realization of � is an H-Hardian y with

�
¡ 1

`�

�0
< y <`�

y for all �<

�. This does not depend on the choice of (`�)�<�. We write 
� := `�
y as in the finite

case. Writing �� :=¡
�
y, then a realization of � is an H-Hardian pseudo limit of (��)�<�.

Note that for such a realization y, the germ yy realizes �. So �-freeness implies 
-free-
ness (but not the other way around). Writing !� := !(��), we have a strictly increasing
pseudo-Cauchy sequence (!�)�<�, and H is !-free if and only if (!�)�<� has no pseudo-
limit in H. Likewise !-freeness implies �-freeness.

Question 4. Let f ; g2C<1 be Hardian and strictly positive and assume that
R
f 41 andR

g >R. Then must we have

f � g ?

4.3 Cuts and H-fields
(continued in 03-03: Lecture 13) In order to make sense of the �-cut and the !-cut, it
is necessary to consider a first-order generalization of Hardy fields, i.e. the notion of H-
fields (more precisely those with constant field R).

4.3.1 H-fields

Definition 4.3.1. Let C be an ordered field. An H-field with constant field C is an ordered
valued differential field (K;+;�; <;�; @) with constant field C such that

HF1. f 0> 0 for all f 2K with f >C.

HF2. We have K4=C +K�.
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We say that K has small derivation if moreover

HF3. f 0� 1 for all f 2K�.

We'll take most our H-fields to have small derivation. In particular, each H-field is an
asymptotic field whose asymptotic couple is H-asymptotic.

4.3.2 Cuts in H-fields Let us fix an ungrounded H-field K, let (¡; y) denote its
asymptotic couple. Then for h2K>, we have

h2 
L if and only if
Z
h4 1 in any H-field extension of K containing

Z
h;

h2 
R if and only if
Z
h� 1 in any H-field extension of K containing

Z
h,


L<h< 
R if and only if
Z
h4 1 and

Z
h� 1 in two distinct H-field extensions of K.

This last ambiguity cannot occur in Hardy fields, since in those the relation
R
h< 1 is

determined.
Assume thatK is real-closed, and let h2K>. Then h realizes � inK if and only if there

is an H-field extension K? of K and a g 2 (K?)> which realizes 
 in K? with h=¡gy (in
fact any such g will realize 
). Similarly, an element h realizes ! in K if and only if there
is an H-field extension K? of K and a g 2 (K?)> which realizes � in K? with h= !(g).
Now consider an ungrounded Hardy field H. Then for f 2H>, we have

f 2!R iff all solutions of 4 y 00+ fy=0 generate a (common) Hardy field extension of H,

f 2!L iff all non-trivial solutions of 4 y 00+ f y=0 oscillate.

If K is a real-closed H-field, then h2K> realizes ! if and only if some H-field extension
has two linearly independent solutions of 4 y 00+ f y = 0, and there is a differential field
extension K(y; y 0) of K which cannot be ordered to make it an H-field extension of K.

There are other nice consequences of !-freeness for real-closed H-fields with small
derivation: that differentially algebraic H-field extensions remain !-free, with mutually
coinitial positive psi-sets.

4.3.3 The !-function
Let F be a differential field with F = (F�)y (e.g. F is a Liouville-closed Hardy field).
Consider a homogeneous linear ODE

y 00+ a y 0+ b y=0: (4.3.1)

Let g 2F� with gy=¡1

2
a, and set z := y g¡1. Then (4.3.1) is equivalent to

4 z 00+ f z=0

for a certain f 2F . For y=/ 0, we have

4 y 00+ f y = y

�
4 y 00

y
+ f

�
= y (f ¡!(2 yy)):

So 4 y 00+ f y has a non-trivial solution in F if and only if f = !(F ). More details in [2,
Section 5.2].

An H-field K with asymptotic integration is !-free if and only if it satifsifes

8f 2K; (9g 2K; ((g� 1)^ (f ¡!(gyy)< (gy)2))): (4.3.2)
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Theorem 4.3.2. Every Hardy field extends differentially algebraically into an !-free Hardy
field.

08-03: Lecture 14:

4.4 Differential algebra

4.4.1 Differential polynomials
Let (R; @) be a differential ring (we impose in particular that Q is a subring of R). We
write RfY g for the ring of differential polynomials with one indeterminate Y . As a ring
this is R[Y ;Y 0; : : : ; Y (r); : : : ], but it is also an extension of (R;@) where @ extends uniquely
to RfY g by setting @Y (r) :=Y (r+1) for all r2N. For any differential ring extension (S; @)
of R and y 2S, we have an evaluation map

RfY g ¡! S

P 7¡! P (y)

which is the unique extension of differential rings sending Y to y. We write Rfyg for the
differential ring generated by y over R, which is the range of the above map.

Inversely, each P 2RfY g can be seen as an operator P (@): S ¡! S which we often
identify with P .

The order of P 2RfY g=/ , the order of P is the least r2N with P 2R[Y ; : : : ; Y (r)]. So
differential polynomials of order 0 are just polynomials in R[Y ]. Any P 2RfY g is the sum
of its homogeneous parts P =

P
dPd where Pd is the homogeneous part of P of degree d.

The degree 1 part P1=
P

i=0
r aiY

(r) is particularly important.

4.4.2 Linear differential operators
The ring R[@] is the ring of linear differential operators over R, which in general is non-
commutative. It is free as a left R-module with basis f@0; @1; : : : g. The product is given
by composition of operators.

The product is given by extending the rules

@ a := a @+ a0 and @@r= @r+1

for a2R and r2N. We see that R[@] is commutative if and only if the derivation on R is
trivial. We also define ord(

P
i=0
r ai@

r)= r if ar=/ 0, and we define the order of 0 to be ¡1.
Each element A of R[@] acts as a CS-linear operator on each differential ring extension
(S; @) of R, where CS is the constant ring of (S; @). Composition of operators coincides
with the product. In other words, we have an embedding (R[@];+;�)¡! (EndCS(S);+;�).

4.4.3 The case of differential fields
We now assume that (K;@) is a differential field, with field of constants C=Ker(@). Then
K[@] has excellent algebraic properties: it is Euclidean in the expected sense (on the left
and on the right).

For A2K[@], the space KerK(A) :=fy2K :A(y)=0g is a finite dimensional subspace
of the C-linear space K. In fact dimC(KerK(A))6 ord(A).
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Factorization in K[@]. Let a2K. Then for y=/ 0 in a differential field extension L
of K, we have (@¡a)(y)=0 if and only if a= yy. So we have A2K[@] (@¡a) if and only
if we have A(y) = 0 for some y=/ 0 in some extension L of K with yy= a. Call A2K[@]
irreducible if ord(A)> 0 and A=/ BD for all B; D 2K[@] of order > 0. The Euclidean
algorithm lets us write every A as a product of irreducibles. The factorization is not unique
(even up to units). We say that A2K[@]=/ splits (over K) if A= a (@¡a1) � � � (@¡ ar) for
some r2N, a2K� and a1; : : : ; ar2K. If A=/ 0 and A=BD, then A splits over K if and
only if both B and D do.

Returning to KfY g, we define additive and multiplicative conjugation. For P 2
KfY g and a2K, we define

P+a := P (a+Y ; a0+Y 0; : : : )
P�a := P (a Y ; a0Y + a Y 0; : : : ):

The order and degree are preserved by those operations, (if a=/ 0 for multiplicative conjuga-
tion). We also have P+a=

P
d (Pd)+a, so additive conjugation commutes with homogeneous

parts.

4.4.4 Compositional conjugation
We still work within a differential field (K; @). Let � 2K�. We consider the derivation
@� := �¡1@ on K. Rewriting P 2KfY g in terms of @� can sometimes drastically simplify
things.

LetK� denote the differential field (K;@�). SoK1=K and (K�) =K� for all  2K�.
For P 2KfY g, we claim that we have a differential polynomial P �2K�fY g such that
P (y) = P �(y) for all y in K and K� respectively (or even extensions thereof). Indeed,
consider @� as the element �¡1 @ of K[@]. We then have

@2 = �@��@�

= � (@�+ �¡1 �0) @�
= �2@�

2+ �0 @�;

@3 = : : :

and so on. We obtain @r=F r(�) @�r+ � � �+F 1(�) @� where each F i lies in ZfY g.
Using those identities, we define P 7!P � to be the unique K-algebra endomorphism of

KfY g which sends each a2K to itself, Y to itself, and each Y (r); r>0 to F r(�)Y (r)+ ���+
F 1(�) Y 0. Note that this operation is bijective, with inverse Q 7!Q�¡1. Indeed, we have
(P �) =P � for all P 2KfY g and  2K�. The compositional conjugation also preserves
the degree and order, and commutes with homogeneous part and additive and multiplic-
ative conjugations.

4.5 Eventual behavior
Now let K be an H-field, with constant field C. We write O=K4 and ℴ :=K�. We also
assume that K has asymptotic integration. We consider the asymptotic couple (¡;  )
of K. For � 2K>, the field K� is still an H-field. The asymptotic couple of K� is (¡;
 ¡ v�), so its representation is just a vertical shift of that of K. The field K� has small
derivation if and only if v�6 
y for some 
 2¡=/ , i.e v�6 � for some �2	. When using
compositional conjugations, we will only consider such �'s which satisfy this property,
which we call active.
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Important phenomenon. Let P 2KfY g=/ . As v� increases, various quantities asso-
ciated to P � stabilize. One such quantity is the so-called dominant degree of P �.

4.5.1 Newton degree of a differential polynomial
Assume now that K has small derivation. Then O and ℴ are differential subrings of (K;@)
(except for the fact that ℴ does not contain 1), so we have a natural differential ring
mohphism OfY g¡!CfY g with kernel ℴfY g, sending each Y (r); r2N to itself and taking
a2O to its residue in C.

For P 2KfY g=/ , take an a 2K� with P = aQ where Q 2OfXg n ℴfY g. Then P 2
a (DP + ofY g) where DP is the image of Q under OfY g¡!CfY g. The number

ddegP :=degDP

does not depend on the choice of a (and thus of DP). We call it the dominant degree of P .
We tend to take a with valuation va=max fvf� :�2Nng where P =

P
�2Nn f�Y

(�). We
define the Newton degree ndegP of P has the eventual value of ddegP � for active � with
sufficiently large valuation. We also set ndeg0 :=¡1. In fact evenDP � eventually stabilizes
to a polynomial NP 2CfY g called the Newton polynomial of P .

Definition 4.5.1. We say that K is Newtonian if every P 2KfY g=/ with ndeg P = 1
has a zero in O.

Theorem 4.5.2. The field K is !-free if and only if for all P 2KfY g=/ , we have

NP 2K[Y ] (Y 0)N:

Theorem 4.5.3. [ADH-Pynn-Coates] Let K be !-free. Then K is Newtonian if and
only if it has no proper immediate d-algebraic H-field extension.

Theorem 4.5.4. [ADH-Pynn-Coates] Let K be !-free. Then there is an H-field exten-
sion KNewt/K where KNewt is Newtonian, and KNewt embeds (non-uniquely) into any
other such expansion.

The extension KNewt/K is unique up to isomorphism over K. Besides, it is an imme-
diate d-algebraic extension of K.

Theorem A. The theory Ttrans of !-free, Newtonian, Liouville-closed H-fields with small
derivation is complete.

The theory of !-free, Newtonian, Liouville-closed H-fields is model complete and has
two model completions (small der and not small der). This is the model companion of the
theory of H-fields.

Theorem B. The field T of transseries is a model of Ttrans. Also the field Tda of differ-
entialy algebraic transseries is a model of Ttrans.
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Chapter 5

H-closed Hardy fields

5.1 Back to Hardy fields

Call a Hardy field H d-maximal if it has no proper d-algebraic extension which is a Hardy
field. In particular, maximal Hardy fields are d-maximal. A Hardy field H is said H-closed
if it is a model of Ttrans, i.e. if it is !-free, Newtonian and Liouville-closed.

Theorem 5.1.1. A Hardy field H is d-maximal if and only if R�H and H is H-closed.

5.1.1 Some preleminary observations:
Let H be a Hardy field with asymptotic integration, and let �2H> be active. Then H�

is not a Hardy field in general, but it is isomorphic as an ordered, valued differential field
to the Hardy field H�  inv for any H-Hardian germ  with  0= �. Indeed, for f 2H, we

have (f �  inv)0=
�

1

 0
f 0
�
�  inv, so

H� ¡! H�  inv

f 7¡! f �  inv

is the desired isomorphism.

Example 5.1.2. Say that H is Liouville-closed, and take �= `n
y (where `n is the n'th

iterated log). Then �= expn+1, so H� is a Hardy field �with faster growing germs�.

5.1.2 Trailing linear differential operators
For a2R, define Car to be theR-linear Cr functions [a;+1)¡!R. We simply write Ca :=Ca0.
Given �2Car¡1, we want to invert the R-linear operator

@ ¡ �: Car¡!Car¡1; f 7! f 0¡ � f ;

i.e. find a right inverse B� for @ ¡ �. We have

B�: Car¡1 ¡! Car

g 7¡!
�
t 7! e�(t)

Z
a

t

e¡�(s) g(s) d s
�
;

where �(t) :=
R
a

t
�(s) d s for all t2 [a;+1).

If �6¡" on [a;+1), then B� has good properties. Indeed, consider the space

Ca
r;4 := ff 2Car : f ; f 0; : : : ; f (r)4 1g:
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This is a Banach space with norm kf kr :=maxfkf k;kf 0k; : : : ;kf (r)kg where kk is the sup
norm on Ca.

Proposition 5.1.3. For r 2N> and �2Ca
r¡1;4, the function @ ¡ �: Ca

r;4¡!Ca
r¡1;4 is a

continuous linear operator, and its operator norm is bounded. Likewise, the operator B� is
continuous provided that �6¡" on [a;+1) for some "> 0.

The case when �6¡" is called the attractive case. The opposite, �repulsive� case, i.e.
when �> " for some "> 0 on [a;+1), then we need another right inverse

B�: Car¡1 ¡! Car

g 7¡!
�
t 7! e�(t)

Z
1

t

e¡�(s) g(s) d s
�
;

for the same � as before. In that case, that B� is continuous.
We next need to consider the case which is neither attractive nor repulsive. Let m2

(Ca1)� be a unit. Then m (@¡ �)m¡1=@¡ (�+my) and m can sometimes be chosen so that
�+my become attractive or repulsive. We then use compositional conjugation to work in
something that is isomorphic to a Hardy field. Indeed for all units �2Ca�, we have

(Y 0¡ �Y )�= � Y 0¡ � (Y 0¡ �¡1 �Y )

where choosing � large enough, the function �¡1� is in the attractive or repulsive case. The
same works for complexifications, taking real parts for repulsive and attractive conditions.

Remainder about smoothness of solutions of ODE's. For P 2RfY g=/ of order r
where R is a differential ring, define

SP :=
@P

@Y (r)
:

Note that degY (r)SP <degY (r)P . Recall that C
1 is a differential subring of C<1, and that

C! is a differential subring of C1. Let P 2C<1fY g=/ have order r and let f 2Cr, so that
P (f) is defined. Suppose that P (f)=0. If SP(f)2C�, then f 2C<1. Similar results hold
if C<1 is replaced by C1 or C!, or even in their complexifications.

A relevant special case: assume that H is a Hardy field and let P 2HfY g be linear
of order r P = Y (r)+ f1 Y

(r¡1)+ � � � + fr Y +R where R 2 ℴfY g. If f 2 Cr is such that
P (f)=0 and that f ; f 0; : : : ; f (r)4 1, then SP(f)� 1 so SP(f)2C�, whence f 2C<1. The
same holds in the complexification.

Consider f1; : : : ; fr2Ca
4 and the operator

A= @r+ f1 @
r¡1+ � � �+ fr: Ca

r;4¡!Ca
4:

Assume that A splits as a composition

A=(@ ¡ �r) � � � (@ ¡ �1)

and we have for each factor @ ¡ �i; i2f1; : : : ; rg a continuous right inverse Bi: Ca
r¡1;4¡!

Ca
r;4. Then we have a continuous right inverse BA=B1 � � �Br for A.

5.1.3 Sketch of proof of the main theorem
We can now explain the proof of Theorem 5.1.1. We will call a Hardy field H r-Newtonian
if it is �Newtonian for differential polynomials of order r�.
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Very brief sketch of proof of Theorem 5.1.1. We want to be able to construct a d-
algebraic H-closed Hardy field extension of H. We initially d-algebraically extend H into a
Liouville-closed and !-free Hardy field containing R, and closed under cos; sin:H4¡!H4.
By Zorn's lemma, it is enough to show that assuming that H is not Newtonian, it has a
proper d-algebraic extension. By non-Newtonianity, there is a witness (P ;m; f̂ ) where
P 2HfY g=/ , m 2H� and f̂ is a zero of P which lies in an immediate H-field extension
of H, with f̂ 2/ H and f̂ �m. We can choose this tuple to be lexicographically minimal
for (ordP ;degY (r)P ;degP )2N3. Since H is real-closed, we have r :=ordP > 1, and H is
(r ¡ 1)-Newtonian. It follows that f̂ is not the zero of a differential polynomial of order
<r over H, so the extension Hhf̂ i is isomorphic over H to Frac(H[Y ; : : : ; Y (r)]/(P )) via

Frac(H[Y ; : : : ; Y (r)]/(P )) ¡! Hhf̂ i
Q
R
7¡! Q(f̂)

R(f̂)
:

We can also change P without modifying the degrees to arrange that m=1, so f̂ � 1: do
this by taking

�
P�m; 1; /f̂ m

�
.

It is enough to find a germ f �1 which is H-Hardian such that Hhf i is isomorphic over
H, just as a field, toHhf̂ i. At a minimum, we want f 2C<1 such that f 2/H and P (f)=0.
To that end, we use a fixed point construction. Let A 2H[@] be the linear differential
operator corresponding to the homogeneous degree 1 part P1 of P . One can arrange that
P1, and thus A, have order r. In order to make this sketch of proof possible, we make the
bold assumption that A splits over H, i.e. that

A=h (@ ¡ �1) � � � (@ ¡ �r)

for h2H� and �1; :: :; �r2H. By using other conjugations and tricks, we can arrange that
P �1 and that �1; : : : ; �r� 1. Pick representatives fj 2Car for each germ �j, for a suitable
common a2R. In fact since �1;:::; �r2H, we can impose that fj2Ca

r;4 by choosing a large
enough. Choosing a even larger enougher, we impose that each factor @¡ �j is either in the
attractive or repulsive case as per Section 5.1.2. This gives us a �good� right inverse B of
the geometric realization A:Ca

r;4¡!Ca
4 of A. Consider the (non-linear in general) operator

	: Ca
r;4 ¡! Ca

r;4

f 7¡! B(P1(f)¡P (f));

and note that any fixed point of 	 is a zero of P . Indeed, assume that f=B(P1(f)¡P (f)).
Then applying A on both sides of the equality gives

P1(f)=A(f)=P1(f)¡P (f);

hence the result. Recall that Ca
r;4 is a Banach space, so it is enough in order to prove

that such a fixed point exists, to show that 	 is contractive on say B :=
n
f 2 Ca

r;4 :

kf kr6 1

2

o
. This can be done after transforming (P ;1; f̂) into a �split normal form� through

successive additive, multiplicative, compositional conjugations. More precisely, we arrange
that P = P1+R where R is �tiny� compared to both P and P1. We have the liberty of
increasing a without changing the problem (e.g. kf kr 6 /1 2 still holds), and then 	 is
contractive and has fixed point f 2Ca

r;4 which is actually infinitesimal, not in H, and also
lies in C<1 by Remark 5.1.3.
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We note three problematic issues:

1. The bold assumption might fail, and it is necessary to work over H[i] in general
(which is a d-valued field). We also need to assume that H4 is closed under cos and
sin. All of this implies that we can assume that H[i] is (r¡ 1)-Newtonian5.1.1. The
complex or non-ordered version of (r¡1)-Newtonianity is stronger and implies that
all non-zero operators in H[i][@] split over H[i].

2. Then one must find a way to get back into the real valued case, starting from the
solution f 2C<1[i]. Indeed write f = g1+ i g2 where g1; g22C<1 and one of g1 or
g2 is not in H.

3. Even if one gets f 2 C<1 with f � 1 and P (f) = 0, one still needs to show that f
is H-Hardian.

As a final comment, the proof can be carried out in C1 instead of C<1. �

For the next few lines, we will focus on some aspects related to points 2 and 3 above,
regarding exponential sums.

5.2 Exponential sums over Hardy fields

5.2.1 The universal exponential extension
Boshernitzan: Given a Hardian germ f 2C<1, we have the following equivalence:

f � log() f is uniformly distributed mod 1.

Where f being uniformly distributed mod 1 means that

lim
T!+1

1
T

Z
0

T

e2�inf(t) d t=0

for each n2N>.
Functions in the R-linear span of ft 7! erit : r 2Rg are called �amlost periodic�. Using

this and Boshernitzan's result, we can derive the following corrolary:

Corollary 5.2.1. Let H be a Hardy field, let �1; : : : ; �n2H such that

R �1+ � � �+R �n\H4�R:

Then for all f1; : : : ; fn2H[i], the germ of f1 ei�1+ � � �+ fn ei�n is infinitesimal if and only
if f1; : : : ; fn are infinitesimal.

Now let H be a Liouville-closed Hardy field containing R, and assume that K :=H[i]
is 1-linearly surjective, i.e. all linear differential equations of order 1 over K have solutions
in K. For f = g+h i2K where g; h2H, we have ef =eg (cos(h)+ sin(h) i) where cos(h);
sin(h)2H by 1-linear surjectivity. So ef 2H � eHi�C<1[i]. Note that (ef)0�K � eKi.

Write

U := K[eK]
= K[eHi]
= ff1 ei�1+ � � �+ fn ei�n : f1; : : : ; fn2H[i]^ �1; : : : ; �n2Hg:

5.1.1. this notion can be made sense of in the general, non-ordered context of d-valued fields or specifications
thereof
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So U is a differential subring of C<1[i] extending K and containing all constants (i.e.
complex numbers). We call U the universal exponential extension of K. For � 2H, we
have je�ij=1 and (e�i)y= �0. In fact eHi=fu2C<1 : juj=1^uy2Hg. If moreover �41,
then e�i2K already, so we are more interested in �'s which are positive infinite. We fix
a decomposition H=��H4 into R-linear spaces (think of � as a space of purely infinite
series). Note that �¡! e�i; � 7! e�i is an isomorphism. We have that U=K[e�i]. This
gives U the structure of a group ring over K, with e�i as the group.

Proposition 5.2.2. The family (e�i)�2� forms a basis of U over K.

Proof. This family clearly generates U over K. Now assume for contradiction that
f1 ei�1 + � � � + fn ei�n = 0 for some n > 0, f1; : : : ; fn 2 H[i]=/ and �1; : : : ; �n 2 �. Then
Corollary 5.2.1 implies that f1; : : : ; fn are infinitesimal. But multipliying by a large f 2
H, we can assume that at least one fi is not infinitesimal: a contradiction. �

Corollary 5.2.3. The ring U is a domain, with U�=K�[e�i].

Below, let � range in �. When using expressions like
P

�2� f� e
�i, we always assume

that the family (f�)�2� 2K� has finite support. Note that for f =
P

�2� f� e
�i 2U, we

have f =
P

�2� f� e
¡�i, whence

f 2C<1()8�2�; (f¡�= f�)()
 
f 2H�

X
�2�>0

H cos(�)+H sin(�)
!
:

In particular, a basis of U\C<1 as an R-vector space is given by (1; cos(�); sin(�))�2�>0.
We extend the valuation on K to U by setting

vg
X
�2�

f� e�i :=min fvf� :�2�g:

This is the unique valuation on U which extends the valuation on H. We have a corres-
ponding dominance relation denoted �g on U. Note that for f 2U, we have f �g 1 if and
only if f��1 for all �2�, whence, by Corollary 5.2.1, if and only if f �1 in C<1[i]. In fact:

Proposition 5.2.4. For f 2U, and m2K�, we have f �gm() f �m and m�g f()
m� f. The same holds for all other asymptotic relations 4g, �g, and so on.. .

5.2.2 Exponential sums and linear differential operators

Let us show that each A2K[@] acts on U in a very transparent way. Let A� :=e¡�iA e�i2
K[@]. Then one can see that

A

 X
�2�

f� e�i
!

=
X
�2�

A�(f�) e�i:

Thus solving A(y)=0 in U reduces to solving systems of equations A�(y)= 0 in K.

Proposition 5.2.5. Let A2K[@]=/ . The C-linear space KerU(A) has a basis

f1 e�1i; : : : ; fn e�ni; where f1; : : : ; fn2K�;

and for any such basis the fi's with �i=0 form a basis of KerK(A). If A morover splits
over K, then n= ord(A), whence KerU(A)=KerC<1[i](A).
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Corollary 5.2.6. Assume that A2H[@]=/ . The R-linear space KerU(A)\C<1 has a basis

g1 cos(�1); g1 sin(�1); : : : ; gn cos(�m); gn sin(�m); h1; : : : ; hn

where g1; : : : ; gm2H�, �1; : : : ; �m2�>0 and h1; : : : ; hn2H�. For any such basis, the family
(h1; : : : ; hn) is a basis of KerH(A). If moreover A splits over K, then 2m+ n= ord(A),
whence KerU(A)\C<1=KerC<1(A).
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Chapter 6

Filling gaps in Hardy fields

We now look into the proof of the following theorem

Theorem 6.0.1. Let H be a Hardy field, let L;R be countable subsets of H with L<R.
Then there is an H-Hardian germ f 2C<1 such that L< f <R.

The special case B=? was already treated by Sjödin-Arkiv-Mat in 1970.
Hausdorff called a linear ordering (X;<) an �1-set if for all countable subsets L;R�X with
L<R, there is an x2X with L<x<R. So Theorem 6.0.1 is equivalent to the following:

Corollary 6.0.2. Every maximal Hardy field is �1 as a linear ordering.

Corollary 6.0.3. Any two maximal Hardy fields are back-and-forth equivalent.

Corollary 6.0.4. Assuming the continuum hypothesis, all maximal Hardy fields are iso-
morphic to the field No(!1) of surreal numbers with countable birth day.

It is unknown whether Theorem 6.0.1 holds in the analytic setting (but it does in the
smooth setting).

6.1 Countable pseudo-Cauchy sequences

Let us start with a valuation theoretic characterization of �1-ness in ordered valued fields.
Let K be an ordered field, with its natural valuation. Recall that its residue field K4/K�

is Archimedean, hence it embeds uniquely into R.

A sequence (ai)i2N in K is said to be pseudo-Cauchy (pc for short) if there exists a
i02N such that for all i; j ; k> i0 with i < j < k, we have ak¡ aj� aj¡ ai. Equivalently,
we have aj+1¡ aj� ai+1¡ ai for all j > i> i0.

Let L be an ordered field extension of K. An element a 2 L is a pseudo-limit of a
sequence (ai)i2N if there is an i02N such that for all j > i> i0, we have a¡ aj� a¡ ai.
Note that this implies in particular that (ai)i2N is pseudo-Cauchy. We then say that (ai)i2N
pseudo-converges (to a) and we write (ai)i2N a.

Example 6.1.1. TakeK=
S
d>0R[[t

/Z d]] as the field of formal Puiseux series, where t>R.
Then the sequence (ai)i2N with ai := t+ t /

1
2+ � � � + t /1 i+1 is pseudo-Cauchy, but does not

pseudo-converge in K itself.

Lemma 6.1.2. [4] The two following conditions on K are equivalent:

i. (K;<) is �1.
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ii. The ordered residue field K4/K� is (isomorphic to) R, every pc-sequence (ai)i2N
indexed by N has a pseudo-limit in K, and the value group of K is �1 as an ordered
set.

For (maximal) Hardy fields, the first part is a given, but maybe not the other two. . .
We will focus on the pc-sequence part of the work.

Before we start, let us reformulate the problem of finding pseudo-limits in and out
of ordered fields. Let (ai)i2N be a pseudo-Cauchy sequence in K. All subsequences of
(ai)i2N are aso pseudo-Cauchy, and share limits in all ordered (and naturally valued)
field extensions of K. By passing to a subsequence, we can arrange that (ai)i2N is strictly
monotonous, and given our �1-ness problem, we might as well take opposites in the strictly
decreasing case, hence imposing that (ai)i2N is strictly increasing. Similarly, we may
assume by translation and by taking a final segment of (ai)i2N that: each ai is strictly
positive (in particular a0), and that ai+1¡ ai� ai¡ ai¡1 for all i > 0. Now for such a
sequence (ai)i2N, we define b0 := a0 and bi+1 := ai+1¡ ai for all i2N. Then we have

b0� b1� � � � and b0; b1; : : : > 0; (6.1.1)

and ai :=
P

k6i bi for all i2N. Using this, one can show that the following are equivalent:

i. All pc-sequences (ai)i2N in K pseudo-converge in K.

ii. For all (bi)i2N satisfying (6.1.1), the pc-sequence (b0+ ���+ bi)i2N pseudo-converges
in K.

6.2 Pseudo-limits in Hausdorff fields

Let H be a Hausdorff field containing R and let fi; i 2N be strictly positive elements
of H with f0� f1� � � �. Set Fn := f0+ � � � + fn for each n2N. Let us try to construct a
Hausdorff field H��H which contains a pseudo-limit of (Fn)n2N. Pick, by induction on
n2N, a continuous representative fn: [1;+1)¡!R of each germ fn, such that fn(t)> 0
and fn+1(t)6 1

2
fn(t) for all t> 1. Thus, for each t> 1, the sum Fn(t) :=

P
n2N fn(t) is

defined. The convergence of this series of functions is uniform on compact subsets of
[1;+1), hence F is actually continuous on [1;+1).

Exercise 6.2.1. For n2N, we have F ¡Fn� fn as germs.

Lemma 6.2.1. If H is real-closed, and (Fn)n2N does not converge in H, then F generates
an Hausdorff field extension H(F ) of H with (Fn)n2N F. Moreover, the extension H(F )/
H is immediate.

6.3 [A few missing notes]

[missing notes here, we take back after the proof of the main filling cuts result in the fluent
case].

Assume now that
�
fi+1
fi

�
i2N

is cofinal in H>;�. In particular, the cofinality of the psi

set 	 is !. Let (�n)n2N be a sequence of positive active elements in H such that (v�n)n2N
is strictly increasing and cofinal in 	.
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Remark 6.3.1. For any active �>0 inH, the arguments of last time give a germ F�2C<1
such that for all k6m<!, we have

(�¡1@)[k]
�
��¡Fm
fm

�
� 1: (6.3.1)

However, this �� depends on �. In particular, for each n2N, writing �n for the derivation
�n := �n

¡1@ on C<1, we obtain a �n satisfying (6.3.1) above, with respect to �n.

Let us construct a partition of unity (�n)n2N such that � :=
P

n2N�n�n exists and

satisfies �n
[k]
�
�¡Fm
fm

�
� 1 for all k6m<!. Then one can show that for all active �> 0 in

H and all k6m<!, we have

(�¡1@)[k]
�
�¡Fm
fm

�
� 1:

Then the key lemma implies that � is an H-Hardian pseudo-limit of (Fn)n2N. We choose
�n as smooth functions that are zero outside of an interval (an; bn+1), one on (bn; an+1)
increasing on (an; bn), decreasing on (an+1; bn+1), and with �n+ �n+1=1 on (an+1; bn+1).
In fact we have a pointwise sum

P
n2N�n=1 everywhere.

Conjecture 6.3.2. Let H be an H-closed Hardy field, and let y2C<1nH be an H-Hardian
infinite germ. There is an "2H> such that for all f 2C<1nH with f (n)¡ y(n)�"(n) for all
n2N, the germ f is also H-Hardian, with a natural isomorphism Hhyi¡!Hhf i over H.

Question 5. What about y= x
p

+e logx
p

+e
� ��
? take "= 1

ex
?????

6.4 Filling cuts in the value group

We now turn to the second part of the proof where we want to prove that the (underlying
ordering of the) value group of a maximal Hardy field is an �1-set.

Theorem 6.4.1. Let H be a Liouville-closed Hardy field, and let (¡;  ) denote its asymp-
totic couple. Suppose we have a � in an H-asymptotic couple (¡�;  �) over R extending
(¡;  ) with the following properties:

i. � 2/ ¡, and cf(¡<�)= ci(¡>�)=!, i.e. � generates a countable cut in ¡.

ii. there are sequences (�i)i2N and (�i)i2N in ¡ and ¡� respectively such that (�i)i2N
is linearly independent modulo ¡, where �0= �¡�0, �i+1= �i

y¡�i+1 for all i2N.
So ¡h�i=¡�

L
i2NR �i.

iii. �i
y< 0.

Then there is an H-Hardian germ y 2C<1 such that vy 2 vHhyi realizes the same cut as
� in ¡.

Remark 6.4.2. This deals in particular with the �nested monomial� case, taking �i as the
valuation of 'i and �i as the valuation of the successive nested monomials.
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